Interpretive Notes Steps to Improvement Data Quality Actions

For technical notes, please see page 24 of the Data Dictionary.

Interpretive Notes

Tips to help you understand the data and put it in context.

Steps to Improvement

Concrete steps you can take to improve care, based on your data. Indicators based on administrative data tend to be the oldest of all indicators in D2D. Improving the timeliness of administrative data is a priority for AFHTO and HQO and others. And in the meantime, there are things teams can do to use these “old” data to fuel current, local efforts to improve. Assuming you have established that the data are good enough to direct action AND that improving performance in this area is a priority for your team, you may wish to discuss the following options with your clinical leaders, Quality Improvement committees, team staff and/or patients:

Data Quality Actions

Tips to help you understand the quality of your data and, if necessary, take steps to improve it. Estimate impact of data quality:

Increase quality of the data If the “imperfect data impact calculator” shows that the issues in your data may point you to a different action than suggested in the report, you might consider:

Additional information for estimating the impact of data quality for this measure:

The data are almost certainly not a definitive estimate of your team’s actual performance in the area of access. However, they might be “good enough” to help you decide if your team needs to improve access or not. To determine if the data are “good enough” for that, estimate how likely it is that one or more of the issues outlined in the interpretive notes are a problem with your team. Then, run the “imperfect data impact calculator” to see if the issue(s) could lead to a different decision related to the need for improvement. To do this, work with your clinical leaders and staff to establish an approximate impact of data quality – i.e., is the data quality issue causing your performance to look like TWICE or HALF or 10% (or other number) less or more than it actually is? Plug that number into the “imperfect data impact calculator.”  It will show you whether the data quality issue(s) you think you have would change your initial decision regarding the need to improve. You may find it hard to generate consensus about the possible impact of data quality issues on the level of performance shown in the D2D report. In that case, try the following options:

If the “imperfect data impact calculator” points to the same decision (i.e., a need to improve or NOT) even after data quality issues are considered, the data are likely “good enough” to base your decision on regarding the need to improve. The next step is to consider strategies to improve, assuming the area of care measured by the indicator is a priority for your team. If your data are not “good enough,” you may then consider taking action to improve your data quality, before or at the same time as you try to improve processes of care.

Leave a Reply

Your email address will not be published. Required fields are marked *